
by: NXP Semiconductors

1 Introduction
Sometimes, user would like to keep the MCU's application software (firmware)
on the external memory media, so that various kinds of way of downloading
the firmware can be supported. This feature is also useful for the engineers
to demonstrate various examples project with only one hardware board.
When the program cannot be downloaded to the chip directly in some
reason (for example, the additional license requirements or the additional
equipment requirements), switching the memory media with different firmware
is more acceptable.

This application note describes a design of 2nd bootloader, using SD card as
the external memory media to keep the firmware image files to be executed. The example projects, including the bootloader
project and firmware project, are developed originally on the LPCXpresso54608 EVK board. The SD card is chosen as the external
memory, as it sets up a file system where the PC can directly read and write the files.

After the POR, the bootloader software in the chip's internal flash runs first. It reads the SD card to detect the available firmware
image files and tells the available options to users through the terminal, based on the UART. Users make the selection, and then
the bootloader software loads the selected image files from SD card to the chip's internal memory, SRAM, and execute.

2 Hardware

2.1 LPC54608 MCU
The LPC54600 is a family of Arm® Cortex®-M4 based microcontrollers for embedded applications featuring a rich peripheral set
with very low power consumption and enhanced debug features.

The LPC54600 family includes up to 512 KB of flash, 200 KB of on-chip SRAM, up to 16 KB of EEPROM memory, a quad SPI Flash
Interface (SPIFI) for expanding program memory, one high-speed and one full-speed USB host and device controller, Ethernet
AVB, LCD controller, Smart Card Interfaces, SD/MMC, CAN FD, an External Memory Controller (EMC), a DMIC subsystem with
PDM microphone interface and I2S, five general-purpose timers, SCTimer/PWM, RTC/alarm timer, Multi-Rate Timer (MRT), a
Windowed Watchdog Timer (WWDT), ten flexible serial communication peripherals (USART, SPI, I2S, I2C interface), Secure
Hash Algorithm (SHA), 12-bit 5.0 M samples/sec ADC, and a temperature sensor.

Contents

1 Introduction......................................1
2 Hardware...1
2.1 LPC54608 MCU...........................1
2.2 LPCXpresso54608 EVK board.... 2
3 Software.. 3
3.1 Edit the linker files to re-allocate the

memory space............................. 3
3.2 Jump to execute the new image.. 5
3.3 Use the cJSON midware to read

configuration file on SD card........5
4 Run demo project............................6

AN13113
A Kind of SD card based Second Bootloader on LPC54600 MCU
Rev. 0 — January 20, 2021 Application Note

Figure 1. LPC54608 MCU in the LPC54600 family

In this application example, the LPC54608J512ET180 part is used.

Figure 2 shows the location of the internal memory.

Figure 2. LPC54608 internal memory for FLASH and SRAM (with SRAMX)

2.2 LPCXpresso54608 EVK board
The example projects, including the bootloader project and application projects, are developed originally on the
LPCXpresso54608 EVK board. Actually, for the bootloader feature, the minimal requirement of hardware board is just with an SD
card socket, as shown in Figure 3.

NXP Semiconductors
Hardware

A Kind of SD card based Second Bootloader on LPC54600 MCU, Rev. 0, January 20, 2021
Application Note 2 / 8

Figure 3. LPCXpresso54608 EVK board with SD card

To simplify the software design and focus on the implementation of bootloader feature, this application example does not enable
the USB to SD card function with the integrated USB port on LPC54608 chip. An external SD card reader device can be used if
your PC does not have the SD card socket, as shown in Figure 4. For future development, it will be a good trial to enable the on-chip
USB feature. Then the user can drag the image files into SD card through the bootloader software directly, without an additional
SD card reader.

Figure 4. Standalone SD card reader

3 Software
The whole example project includes two parts of projects:

• The bootloader project operates the SD card device with file system, loading image file from SD card to SRAM. Then
the bootloader executes the image of firmware. During my development, I used the sdcard_fatfs example project from
MCUXpresso SDK as the start of coding to create a bootloader_sdcard_fatfs project.

• The firmware runs the user application work. To create the image, build the firmware project. The firmware project is not
an award of the existence of bootloader, It can be downloaded and debugged independently during the development.
However, since the image file of firmware can be loaded to the SRAM, be careful that the code size of the image file is
not so big to fill the SRAM. During my development, I used the hello_world example project from MCUXpresso SDK as the
start of coding to create an app_hello project and created another app_blinky project based on it.

3.1 Edit the linker files to re-allocate the memory space
Just like other bootloader designs, the memory space allocation for each part of images is most important. Since the bootloader
and the firmware are co-existing in a time inside the chip, the designer needs to separate them and make sure each part still has
enough memory resource to run.

NXP Semiconductors
Software

A Kind of SD card based Second Bootloader on LPC54600 MCU, Rev. 0, January 20, 2021
Application Note 3 / 8

Generally, the bootloader's code is placed in the on-chip FLASH, and the data is placed in a piece of standalone internal SRAM
(SRAMX, 32 KB, starting from 0x0400_0000). The firmware's code and data are all placed in the continuous memory space
starting from 0x20000000, as shown in Table 1.

Table 1. Allocation of the memory space for bootloader and firmware project

Function Address Size

Bootloader code 0x0000_0000 - 0x0007FFFF 512 KB

Bootloader data 0x0400_0000 - 0x04007FFF 32 KB

Firmware code 0x2000_0000 - 0x2001FFFF 128 KB

Firmware data 0x2002_0000 - 0x20027FFF 32 KB

Actually, these settings take effect in the linker files for each project. In the current example, there are two linker files:

1. Bootloader project's linker file

define symbol m_interrupts_start = 0x00000000;
define symbol m_interrupts_end = 0x000003FF;

define symbol m_text_start = 0x00000400;
define symbol m_text_end = 0x0007FFFF;

define symbol m_data_start = 0x04000000;
define symbol m_data_end = 0x04007FFF;

...

2. Firmware project's linker file

define symbol m_interrupts_start = 0x20000000;
define symbol m_interrupts_end = 0x200003FF;

define symbol m_text_start = 0x20000400;
define symbol m_text_end = 0x2001FFFF;

define symbol m_data_start = 0x20020000;
define symbol m_data_end = 0x20027FFF;

...

In both linker files, I enlarged the size of stack and heap for the default settings to provide enough resource for the following usage
of cJSON. In the example projects, the stack size and the heap size are all with 4 KB.

/* Sizes */
if (isdefinedsymbol(__stack_size__)) {
 define symbol __size_cstack__ = __stack_size__;
} else {
 define symbol __size_cstack__ = 0x1000;
}

if (isdefinedsymbol(__heap_size__)) {
 define symbol __size_heap__ = __heap_size__;
} else {

NXP Semiconductors
Software

A Kind of SD card based Second Bootloader on LPC54600 MCU, Rev. 0, January 20, 2021
Application Note 4 / 8

 define symbol __size_heap__ = 0x1000;
}

Actually, since the memory space is totally independent, the firmware project can be downloaded and debugged (into SRAM)
directly without the regarding of bootloader. It can run normally under the control of the debugger.

3.2 Jump to execute the new image
To jump to execute the new image, manually fill the SPs (MSP and PSP) and the PC registers with the address for the new image.
In this example, I used the traditional piece of code as following:

/* execute the firmware exists in sramx. */
typedef void(*func_0_t)(void);
void app_execute_ram_firmware(void * addr)
{
 uint32_t * vector_table = (uint32_t *)addr;
 uint32_t sp_base = vector_table[0];
 func_0_t pc_func = (func_0_t)(vector_table[1]);

 /* set new msp and psp. */
 __set_MSP(sp_base);
 __set_PSP(sp_base);
#if __VTOR_PRESENT == 1
 SCB->VTOR = addr;
#endif
 /* jump to application. */
 pc_func();
 /* the code should never reach here. */
 while (1)
 {}
}

3.3 Use the cJSON midware to read configuration file on SD card
cJSON is an open source middleware component of parsing the JSON text existing in GitHub - DaveGamble/cJSON:
Ultralightweight JSON parser in ANSI C. It is coded with pure C to be integrated into any embedded system without any
porting work related to the platform.

In this example, cJSON was used to parse the configuration file written in JSON format, which is a popular way used in Python
programming. The conf.json file was placed in the SD card with the image files. It recorded the information about all the available
image files. Then the bootloader read to find the real image file according to the configuration file. The contenxt of the conf.json
file was as below:

{
 "default":
 {
 "idx":1,
 "num":2
 },
 "filepaths":
 [
 {
 "idx":0,
 "path":"/hello.bin"
 },
 {
 "idx":1,
 "path":"/blinky.bin"

NXP Semiconductors
Software

A Kind of SD card based Second Bootloader on LPC54600 MCU, Rev. 0, January 20, 2021
Application Note 5 / 8

https://github.com/DaveGamble/cJSON
https://github.com/DaveGamble/cJSON

 }
]
}

It means there are two image files: hello.bin and blinky.bin, with their own index number. More image files can be added into the
list if needed.

To integrate the cJSON into the bootloader project, add the cJSON.h and cJSON.c files, as shown in Figure 5.

Figure 5. Use the cJSON in bootloader project

For the detailed usage about cJSON, see the readme.md file in the repository.

For the detailed coding work about the whole application demo project, see AN13113SW.

4 Run demo project
After the POR, the bootloader software in the chip's internal flash runs first. It reads the SD card to detect the available firmware
image files and tells available options to users through the terminal, based on the UART. Users make the selection. Then the
bootloader software loads the selected image files from SD card to internal memory of the chip, SRAM, and execute.

To run the demo project, please follow the steps:

1. Build the app_hello and app_blinky projects to create the hello.bin and blinky.bin files. Actually, there are also the
pre-created ones in the attachment.

2. Plug in the SD card to PC, copy the hello.bin, blinky.bin and the conf.json files into the root directory of file system on
SD card, and then unplug the SD card from PC. Now, the SD card is ready.

NXP Semiconductors
Run demo project

A Kind of SD card based Second Bootloader on LPC54600 MCU, Rev. 0, January 20, 2021
Application Note 6 / 8

3. Build the bootloader_sdcard_fatfs project and download the image into LPC54608 EVK board.

4. Plug in the SD card to the LPC54608 EVK board and reset the board. Now the demo starts.

5. Watch the terminal and make the interaction with the board. The log is as seen in Figure 6.

Figure 6. Terminal interaction with demo board

NXP Semiconductors
Run demo project

A Kind of SD card based Second Bootloader on LPC54600 MCU, Rev. 0, January 20, 2021
Application Note 7 / 8

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: January 20, 2021
Document identifier: AN13113

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Hardware
	2.1 LPC54608 MCU
	2.2 LPCXpresso54608 EVK board

	3 Software
	3.1 Edit the linker files to re-allocate the memory space
	3.2 Jump to execute the new image
	3.3 Use the cJSON midware to read configuration file on SD card

	4 Run demo project

